Teknik Analiz D├╝nyas─▒na Ho┼čgeldiniz. Payla┼čmak G├╝zeldir.

Yay─▒ndan kald─▒rmak istedi─činiz formüller için algoritmabul@gmail.com ile ileti┼čime geçebilirsiniz... 

  • D─░KKAT: Form├╝ller, Sistemler sadece e─čitim ama├žl─▒d─▒r. Al─▒m sat─▒m, olas─▒ anapara kayb─▒ ve di─čer kay─▒plar dahil olmak ├╝zere "Y├ťKSEK R─░SK" i├žerir.
  • Mucize teknik g├Âsterge yoktur, sadece do─čru veya yanl─▒┼č kullan─▒lan g├Âstergeler vard─▒r.

Oscillator Inverse Fisher Transform by John Ehlers

Teknik analizde fiyat─▒n y├Ân├╝ veya trendin devam─▒yla ilgili fikir veren matematiksel modellerdir. Trend olu┼čmam─▒┼č piyasalarda fiyatlar yatay bir bantta hareket ederken trendin i├žinde d├╝zeltme seviyelerini tespit eden indikat├Ârlere OS─░LAT├ľR denir

algoritma

ei¤Ç + 1 = 0
Algorithmist
Algoritma
Kat─▒l─▒m
23 Eki 2020
Mesajlar
1,799
John Ehlers' article in this issue, "The Inverse Fisher Transform," includes the TradeStation code for two indicators. The MetaStock code for those same indicators is listed below.​

­čôîInverse Fisher Transform of RSI
v1:= .1*(RSI(5)-50);
v2:= Mov(v1,9,W);
.5;
-.5;
(Exp(2*v2)-1)/(Exp(2*v2)+1)​

­čôî Inverse Fisher Transform of RSI
periods:=Input("Periods:" ,1,100,5);
v1:= .1*(RSI(periods)-50);
v2:= Mov(v1,LastValue(Int(1.8*periods)),W);
-.5;
.5;
(Exp(2*v2)-1)/(Exp(2*v2)+1)

Inverse Fisher Transform - Cyber Cycles with Inverse Filter Transform

pr:= (H+L)/2;
a:= 0.07;
sp:= (pr+(2*Ref(pr,-1))+(2*Ref(pr,-2))+Ref(pr,-3))/6;
cycle:=Power(1-(.5*a),2)*(sp-(2*Ref(sp,-1))+Ref(sp,-2))+(2*(1-a)) *
PREV-(Power(1-a,2)*Ref(PREV,-1));
.5;
-.5;
(Exp(2*cycle)-1)/(Exp(2*cycle)+1)


John Ehlers' cyber cycle concept is included in the second formula. Here is the formula for the cyber cycles without the transform:​

Inverse Fisher Transform - Cyber Cycles
pr:= (H+L)/2;
a:= 0.07;
sp:= (pr+(2*Ref(pr,-1))+(2*Ref(pr,-2))+Ref(pr,-3))/6;
Power(1-(.5*a),2)*(sp-(2*Ref(sp,-1))+Ref(sp,-2))+(2*(1-a)) *
PREV-(Power(1-a,2)*Ref(PREV,-1))​

In his article, Ehlers states the inverse Fisher transform can work with any oscillator, and that values between -5 and 5 are more suited for the transform calculations. Here is another version of the inverse Fisher transform of RSI. This version takes the highest and lowest value of the RSI and normalizes the scale to a range of -5 to 5.​

Inverse Fisher Transform - Normalized RSI with IFT

plot:= RSI(5);
ph:=LastValue(Highest(plot));
pl:=LastValue(Lowest(plot));
pf:=10/(ph-pl);
v1:= ((plot-pl)*pf)-5;
v2:= Mov(v1,9,W);
.5;
-.5;
(Exp(2*v2)-1)/(Exp(2*v2)+1)​

´┐Ż
This second version of the formula can be used with any oscillator by substituting the formula for your oscillator with the formula for the RSI on the first line. For example, to use the formula on the stochastic oscillator, change the first line from this:
plot:= RSI(5);
to this:
plot:= Stoch(5,3);

--William Golson
Equis International​
Source / From:
 
Son d├╝zenleme:

algoritma

ei¤Ç + 1 = 0
Algorithmist
Algoritma
Kat─▒l─▒m
23 Eki 2020
Mesajlar
1,799

Inverse F─▒sher Transform CCI​

CCIpd:=5;
WMApd:=9;
CCI1:= 0.1*(cci(CCIpd)/4);
CCI2:= Mov(CCI1,WMApd,W);
CCI:=(Exp(2*CCI2)-1)/(Exp(2*CCI2)+1);
CCI
 

algoritma

ei¤Ç + 1 = 0
Algorithmist
Algoritma
Kat─▒l─▒m
23 Eki 2020
Mesajlar
1,799
FISHER TRANSFORM
period:=Input("Period",1,500,10);
median:=cci(14);
maxMedian:=HHV(median,period);
minMedian:=LLV(median,period);
nValue1:=0.33*2*((median-minMedian)/(maxMedian-minMedian)-0.5)+0.67*prev;
nValue2:=if(nValue1>0.99,0.999,if(nValue1<-0.99,-0.999,nValue1));
nFish:=0.5*log((1+nValue2)/(1-nValue2))+0.5*prev;
pos:=if(nFish>ref(nFish,-1),1,if(nFish<ref(nFish,-1),-1,prev));
nFish;
ref(nFish,-1)

kaynak
K─▒van├ž ├ľzbilgi├ž
 

Forumdan daha fazla yararlanmak i├žin giri┼č yap─▒n yada ├╝ye olun!

Forumdan daha fazla yararlanmak i├žin giri┼č yap─▒n veya kay─▒t olun!

Kay─▒t ol

Forumda bir hesap olu┼čturmak tamamen ├╝cretsizdir.

┼×imdi kay─▒t ol
Giri┼č yap

E─čer bir hesab─▒n─▒z var ise l├╝tfen giri┼č yap─▒n

Giri┼č yap